Impedance studies on lithium manganese dioxide cells R Janakiraman, P N N Namboodiri and R Gangadharan Central Electrochemical Research Institute, Karaikudi-623 006, INDIA Electrolytic manganese dioxide (EMD) samples were heated to 373K, 573K, 723K and 1023K. Li/MnO₂ button cells were fabricated using these EMD samples as cathode materials. These cells were investigated for impedance response. Kinetic parameters were calculated. Key words: Impedance, lithium cell, electrolytic MnO₂ #### INTRODUCTION I thas been proved that heating MnO₂ in air or vacuum brings about changes in its crystallinity and occluded water content [1]. The effect of heating electrolytic manganese dioxide (EMD) on the impedance parameters of the Li/MnO₂ button cells has been studied. Butler-Volmer equation [2] has been used earlier to derive kinetic factors. Similar calculations were also made, TABLE-I: Variation of kinetic parameters of heated MnO₂ samples with concentration of PC (LiClO₄) | MnO ₂ heat- ing | 0.5M PC | | 1M PC | | 1.5M PC | | 2M PC | | | |----------------------------|------------------------|----------------------|------------------------|--|------------------------|--|------------------------|--|--| | | R _{act} (ohm) | i_o $(mA.cm^{-2})$ | R _{act} (ohm) | i _o
(mA.cm ⁻²) | R _{act} (ohm) | i _o
(mA.cm ⁻²) | R _{act} (ohm) | i _o
(mA.cm ⁻²) | | | Temp. K | | | | | | | | | | | At 283K | | | 730 | | | | | | | | 373 | 165 | 0.096 | 450 | 0.035 | 1060 | 0.015 | 175 | 0.000 | | | 573 | 120 | 0.030 | 370 | 0.043 | 700 | 0.013 | 175
520 | 0.090
0.031 | | | 723 | 320 | 0.049 | 520 | 0.031 | 390 | 0.022 | 350 | 0.031 | | | 1023 | 250 | 0.063 | 550 | 0.031 | 1440 | 0.010 | 320 | 0.049 | | | | | | | | | | | 3.3.72 | | | At 293K | | | | | | | | | | | 373 | 140 | 0.116 | 255 | 0.063 | 1030 | 0.016 | 180 | 0.090 | | | 573 | 82 | 0.020 | 180 | 0.092 | 360 | 0.045 | 200 | 0.082 | | | 723 | 105 | 0.150 | 310 | 0.053 | 250 | 0.065 | 190 | 0.086 | | | 1023 | 175 | 0.094 | 400 | 0.041 | 740 | 0.022 | 150 | 0.110 | | | At 303K | | | | | | | | | | | 373 | 190 | 0.090 | 260 | 0.060 | 270 | 0.041 | 170 | 0.010 | | | 573 | 30 | 0.570 | 280 | 0.060 | 270 | 0.063 | 225 | 0.076 | | | 723 | 325 | 0.053 | 550 | 0.031 | 90 | 0.190 | 150 | 0.110 | | | 1023 | 275 | 0.061 | 450 | 0.037 | 1600 | 0.010 | 135 | 0.110 | | | | | | | | | | | | | | At 313K | | | | | | | | | | | 373 | 45 | 0.390 | 200 | 0.087 | 240 | 0.073 | 90 | 0.194 | | | 573 | 25 | 0.700 | 115 | 0.150 | 230 | 0.075 | 140 | 0.120 | | | 723 | 140 | 0.124 | 300 | 0.059 | 100 | 0.175 | 100 | 0.175 | | | 1023 | 140 | 0.120 | 280 | 0.063 | 400 | 0.043 | 50 | 0.350 | | ## **EXPERIMENTAL** Details on heating EMD, purification of materials and cell fabrication have been reported earlier [3]. Impedance measurements of these cells at frequencies ranging from 1 mHz to 20 KHz with a Solartron FRA1174 were conducted at different temperatures. The cell was connected galvanostatically across 100 kilo ohms resistance and an a.c. signal of 100 mV was applied. Sluyter's plots were constructed and from these the solution resistance R_{sol} , charge transfer resistance R_{act} , exchange current density, i_0 and double layer capacitance C_{dl} were calculated. ## RESULTS AND DISCUSSION The R_{act} and i_o values for these cells are given in Table I. Values of i_o observed in these experiments are from 1×10^{-2} mA cm⁻² to 7×10^{-1} mA.cm⁻². The heating of MnO₂ samples has altered the crystalline nature of the sample and hence the diffusion of lithium ions into the lattice would be altered. The highest i_o values are for the MnO₂ sample heated to 573K. At 313K, the cell with 0.5M propylene carbonate (PC) LiClO₄ solution and MnO₂ heated to 573K has an i_o value of 0.7 mA.cm⁻² and at 303K the cell of the same composition has an i_o value of 0.57 mA.cm⁻². The R_{act} values are minimum for this sample. It is obvious that high temperature and low viscosity support good exchange behaviour. The R_{sol} also increases with concentration. Ion association, high viscosity and diffusion problems are probably enhanced at high concentration. The i_o value decreases with increase in concentration of electrolyte for the cell with MnO₂ (573K), the i_o values at 293K for 0.5M, 1M, 1.5M and 2M are 0.20, 0.092, 0.045 and 0.082 mA.cm⁻² respectively. There is some deviation at 2M concentration . At 313K, i_o values are uniformly good at all concentrations. The i_o values are in the 10^{-2} level at 283K. Only from 293K onwards it starts increasing. I_o increases with increase in temperature and R_{act} decreases. The diffusion phenomenon which is very essential in electrolytic conduction is favoured at these higher temperatures. ## CONCLUSION It is clear that MnO_2 (573K) and 1M PC/LiClO₄ solution is the ideal composition for Li/MnO₂ cell for best performance. ## REFERENCES - H Ikeda, T Saito and H Tamura, Manganese Dioxide Symposium, Ohio, (Ed) A Kozawa and R J Brodd, 1 (1975) 384 - 2. J R Sandifer and M R Suchanski, J Appl Electrochem, 14 (1984) 329 - 3. R Janakiraman, P N N Namboodiri and R Gangadharan, Bull Electrochem, 4 (1988) 455