Dhanaraj, J. and Jagannathan, R. and Kutty, T.R.N. and Lu, C.H. (2001) Photolumuniscence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis. Journal of Physical Chemistry B, 105 (45). pp. 11098-11105. ISSN 1520-6106

[img] PDF
Restricted to Repository staff only

Download (12Mb) | Request a copy


Red emitting cubic Y2O3:Eu3+ nanophosphor with an average particle size in the range of 10-20 nm was synthesized using a more facile gel-polymer pyrolysis process. The maximum relative luminescence yield obtained for the nanophosphor prepared with a urea and PVA combination is about 30% in relation to the bulk Y2O3:Eu3+ industrial red phosphor. The photoluminescence excitation spectrum monitoring the dominant hypersensitive 5D0-7F2 red emission of Eu3+ comprises two parts, viz., the dominant Eu3+-O2 charge transfer band and a weak excitonic band (or its tail) corresponding to the Y3+-O2- host matrix absorption. The relative strengths of these two bands have a strong dependence on the particle size. Furthermore, in this nanocrystalline insulator system having a band gap of about 6 eV, it is possible to observe a size dependent blue shift (~600 cm-1) in the photoluminescence excitation band corresponding to the Urbach tail region of the yttria host matrix. Both the bulk and nanocrystalline Y2O3:Eu3+ show storage luminescence, a phenomenon previously unknown in this system. The mechanisms responsible for this appear to be different in these systems. The storage luminescence in the bulk system can be attributed to lattice defects, whereas that in the nanocrystalline counterpart is from a meta-stable, photoinduced surface-states arising from chemisorbed species

Item Type: Article
Subjects: Electrochemical Materials Science
Depositing User: ttbdu cecri
Date Deposited: 06 May 2012 06:34
Last Modified: 06 May 2012 06:34
URI: http://cecri.csircentral.net/id/eprint/2465

Actions (login required)

View Item View Item