ELECTROCHEMICAL INSTRUMENTATION

COMPUTER PROGRAMME FOR ELLIPSOMETRIC STUDY OF SURFACE FILMS

R SRINIVASAN

Central Electrochemical Research Institute, Karaikudi - 623 006

ABSTRACT

Thickness and refractive index of non-light-absorbing surface films can be found out accurately from optical measurements by ellipsometry. However, the mathematical calculations are extremely tedious requiring the use of modern computers. The present paper describes a computer programme developed for this purpose.

Key words: Ellipsometry, Surface film thickness, Computer Programme.

INTRODUCTION

The formation or removal of a film is involved in most of the electrochemical processes. These events are usually of crucial importance in determining the course of the process being studied, and studying them gives us an insight into the nature of the process. The ellipsometer is an experimental tool that allows us to do this with very high accuracy. In ellipsometry, one observes the change in the state of polarization of a polarized beam of light caused by reflection at the specimen surface. From this, one may obtain the thickness and optical constants of the specimen when the specimen is a surface film [1-7]. The ratio of the complex amplitudes of the p and s components (vibrating parallel and perpendicular to the plane of incidence, respectively) of the electric vector \vec{E} gives the state of polarization \vec{T} Single observation of change in \vec{T} is enough for the determination of two optical constants of a transparent film, (with k = 0) say, the thickness and refractive index [8-13]. But, when the film is absorbing, its refractive index becomes complex (n = n - ik) and an additional observation is necessary.

THEORY

The reflection coefficients for a film covered surface are given by

$$\mathbf{R}^{\mathbf{p}} = \frac{\mathbf{r}_{12}^{\mathbf{p}} + \mathbf{r}_{23}^{\mathbf{p}} \mathbf{e}^{\mathbf{D}}}{1 + \mathbf{r}_{23}^{\mathbf{p}} \mathbf{r}_{23}^{\mathbf{p}} \mathbf{e}^{\mathbf{D}}} \qquad \dots (1)$$

$$\mathbf{R}^{*} = \frac{\mathbf{r}_{12}^{*} + \mathbf{r}_{23}^{*} \, \mathbf{e}^{i\mathbf{D}}}{1 + \mathbf{r}_{13}^{*} \, \mathbf{r}_{23}^{*} \, \mathbf{e}^{i\mathbf{D}}} \qquad \dots (2)$$

where the superscripts p and s denote the components of light parallel and perpendicular to the plane of incidence, respectively.

The reflection coefficients for the boundary between i^{th} and j^{th} medium, r_{ij}^{ij} and r_{ij}^{in} are given by the equations,

$$\mathbf{r}_{ij}^{\mathbf{p}} = \frac{\mathbf{n}_i \cos \phi_j - \mathbf{n}_j \cos \phi_i}{\mathbf{n}_i \cos \phi_i + \mathbf{n}_i \cos \phi_i} \dots (3)$$

$$r_{ij}^{*} = \frac{n_{i} \cos \phi_{i} - n_{j} \cos \phi_{j}}{n_{i} \cos \phi_{i} + n_{i} \cos \phi_{i}} \qquad \dots (3)$$

where n_i and d_i are the refractive index of the ith medium and an angle of

incidence in that medium respectively; i is 1, 2 and 3 for the ambient medium (air or solution), the film and the substrate underneath, respectively. n_i and ϕ_i are in general, complex members.

D is related to the thickness of the film D_2 and wavelength j as

$$\mathbf{D} = -4 \frac{1}{\pi} \mathbf{D}_2 \mathbf{n}_2 \cos \frac{\phi^2}{\lambda} \qquad \dots (5)$$

$$n_2 \approx n - ik$$
 ... (6)

Thus \mathbb{R}^p and \mathbb{R}^s are complex functions of the three unknown quantities of the film n, k and D_2 and other variables in the expressions λ , ϕ_1 , n_1 and n_3 are all known or measurable.

In order to determine the film constants, two parameters Δ and ψ are measured by ellipsometry. These are related to R^P and R^{*} as follows:

$$\tan \psi e^{i\Delta} = \frac{R^{p}}{R^{s}} \qquad \dots (7)$$

Equation (7) is, in fact, two equations because both sides have complex members. We can write [14]

$$\tan w e^{i\Delta} = F(n, k, D_{2}...) \exp [iG(n, K, D_{2}...)] ...(8)$$

$$an_{W} = F(n k D_{r})$$
⁽⁹⁾

$$\Delta = G(\mathbf{n}, \mathbf{k}, \mathbf{D}_{\mathbf{n}_{\mathbf{n}_{\mathbf{n}}}}) \tag{10}$$

RESULTS AND DISCUSSION

The above two equations are extremely complicated and their solution and use for interpreting ellipsometric data requires electronic computation. Iteration technique is generally adopted. For each value of refractive index of the film, various values of Δ and ψ parameters are generated varying the thickness of the film. Computer programme has been written for generating tables of Δ , ψ and thickness.

The optical constants of transparent films can be found out by using the experimentally determined Δ and ψ values in the above tables. The programme given below is for finding the thickness and refractive index of silicon dioxide film on silicon substrate. The programme is suitable for nonabsorbing films, and is designed for use with a microcomputer with lesser memory capacity also. Test runs have been made in AL 2000 computer. Results have been cross checked and found to be accurate up to 2nd decimal place (as evident from Table I) with literature values [15].

C	GENERATION OF THICKNESS
	OELTA AND PS1 TABLES
10	REAL NI, N2
56	PHI1=1.2217
30	N1=1.0
	X1=0.0
	DO 690 I=1,3
	X1=X1+0 05
	N2=1.40+X1
	WRITE(2 51)
	WRITE(2 51)
51	FORMAT(1X)
	WRITE(2,55) N2
55	FORMAT (40X,5HN2= ,F4.2)
	WRITE(2,51)
	WRITE(2,51)
50	A=N1#51N(PH11)/N2
60	C=C05(PH11)
70	B=SURF(1-AXA)
80	H15b=(N1*B-N5*C)/(N1*B+N5*C)
90	R125=(N1#U-N2#B)/(N1#U+N2#B)
100	E=4.07
110	0=0.033
120	F=N2#A#E/(E#E+D#D)
130	G=N2#A#U/(E#E+U#U)
140	P=5Q()((1-+*+)*(1+6*6))
150	
160	0x1=(N2#P+E#B)##2+(N2#Q=D+B)##2
170	
180	
190	
200	
210	
200	KONK+(NCAD)##C-X#X-(#)
230	
240	HI-RINK/ 061
540	N3-02N0/002
200	
210	Ann=6not(N2kk2-5(N(PHI1)kk2))/5461
260	
	NA 490 K=1 21
	K1=K1+1
	$D^{2}=20 \times (K_{1}-1)$
	TE (K1 LT 21) GOTO 300
	(F (K1 EQ 21) GOTO 281
281	CONTINUE
<u></u>	00 325 L=1,50
	D2=400 0+(L#50)
300	CONTINUE
290	RDELTA=44#U2#ADU/7
-	RRDEL=RDELTA#180#7/22
31	EDR=COS(2#RDELTA)
	EUI=-SIN(RUELTAK2)
	A5=A1#EDH-A2#EDI
	A6=A2#EDH+A1#ED1
	A7=R12P+A5
	A8=1+R12P#A5
	A9=R12P*A6

	HTT-HIMMOLIGHTI
	A12=A6#A8-A7#A9
	RPR=A11/A10
	RP1=A12/A10
	A13=A3#EDR-A4#EDI
	A14=A4*E0R+A3*E0I
	A15=R125+A13
	A16=1+R125#A13
	A17=#125#A14
	A18=A16##2+A17##2
	A19=A15#A16+A14#A17
	A20=A14#A16-A15#A17
	R5R=419/A18
	05T=A20/A18
	A21=RPF##5R+RP1#R51
	NUV 05-431 1453
	NUNA-NE1/NEU NNA)-AUU/AUU
	80
	PS1=ATAN(SURT()####ETDB##C//#100#//CC
	1F (AA) 400,423,430
400	AA=-AA 35 (60) ADE 466 505
	1F (8B) 4/3,460,525
4/5	
	DEL 1A=A (AN(BB/AH)
480	
525	DEL TA=ATAN(BB/AA)
	DEL 1A=180-DEL 1A
	G010 600
425	CONTINUE
	IF (BB) 550,700,575
550	DEL1A=270
	G010 600
575	DELTA=90
	GUTO 600
450	CONTINUE
	IF (88) 580,585,590
580	88=-88
	DEL TA=ATAN(BB/AA)
	OELTA=DELTA#180#7/22
	DELTA=360-DELTA
	GD10 600
585	DELTA=0
	GUTO 600
590	DELTA=A (AN (BB/AA)
	DELTA=DELTA#180#7/22
	GOTO 600
600	CONTINUE
	WRITE(2,650) 02,P51,0ELTA
650	FORMAT(8X,F5.0,2(10X,F9.4))
690	CONTINUE
700	END

04 Dillation of Electronic sectors 2 (2) Mar Apr 198

A10=A8**2+A9**2

Srinivasan - Computer programme for ellipsometric study

Table 1: PSI and DELTA values generated for various film thicknesses $N_0 = 1.5$

D₂ ▲ •	PSI	PSI [15]	DELTA	DELTA [15]
20		11 965	172.522	172 522
40	12.117	12,120	166.260	166.260
60	12,360	12.354	160,180	160,180
80	12.685	12.689	154.345	154,343
100	13.084	13.087	148.797	148,795
200	15,885	15.888	125,817	125.809
500	26.691	26.695	89.604	89,653
1000	58,358	58.324	81.096	81.114
1500	41.634	41.691	281,675	281,646
2000	20,398	20.436	253,832	253,865
2500	14,802	14.777	132.854	133.053

This programme has been extended to accommodate absorbing films also. It requires a computer which has a facility to handle complex numbers as such. The advanced programme has also been tested in IBM 370/155 system for iron oxide films on iron substrates.

- 1. P Drude, Ann Phys, 36 (1889) 865
- 2. R.J. Archer, J Electrochem Soc, 104 (1957) 619
- 3. AC Hall, Surf Sci, 16 (1969) 1

4. L Troustad, Trans Faraday Soc, 29 (1933) 502

5. AB Winterbottom, Electrochem Soc, 76 (1939) 327

- 6. A Rothen, Rev Sci Instr, 16 (1945) 26
- 7. M Born and E Wolf, Principles of Optics, Pergamon Press, New York (1959)
- 8. K Kinosita and M Yamamoto, Thin Solid Films, 34 (1976) 283

9. BD Cahan, J Horkans and E Yeager, Surf Sci, 37 (1973) 559

10. SS Samuel, Surf Sci, 56 (1976) 97

11. R M A Azzam, Surf Sci, 56 (1976) 6

12. BD Cahan, Surf Sci, 56 (1976) 354

13. RC O'Handley, Surf Sci, 46 (1974) 24

14. WK Paik and JO'M Bockris, Surf Sci, 28 (1971) 61

15. Tables supplied by M/s Gaertner Scientific Corporation, USA.

