CATALYTIC ANODES IN ELECTROWINNING - INHIBITION OF POISONING BY MANGANESE IONS PART II - GALVANOSTATIC STUDIES RM MEYYAPPAN, P RAMACHANDRAN, K. V VENKATESWARAN and R SRINIVASAN Central Electrochemical Research Institute, Karaikudi-623 006

Abstract

The deactivation of the catalytic anodes ceused by Mn^{2+} ion in electrowinning electrolytes has been studied under galvanostatic conditions. Gradual anode potential risa in presence of Mn^{2+} ion indicates the deterioration in the catalytic activity as a result of MnO_{2} formation on the electrode surface. The addition of soluble phosphorous or arsenic compounds is found to restrict the rise in anode potential. Current efficiency studies made for MnO_{2} deposition in presence of arsenic or phosphorous compound confirm the inhibiting tendency of these surtace active substances on MnO_{2} formation. Surface characterisation of polarised alectrodes has also been made using Scanning electron microscope.

Key words: Catalytic anodes, slectrowinning, galvanostatic studies, Inhlbltion of Mn^{2+}.

INTRODUCTION

In recent years there have been many attempts to reduce power consumption in the production of metals by electrowinning process. The power requirement can be decreased by effecting a reduction in the cell voltage which in turn can be reduced by decreasing the oxygen overvoltage. Considerable work has been done on the development of improved anodes for electrowinning of metals. A straight forward reduction in oxygen overpotential is being realised by the substitution of dimensionally stable anodes for the conventional lead alloy anodes. Noble metal oxides like RUO_{2} and IrO_{2} show excellent characteristics as catalysts for oxygen evolution. Excellent corrosion resistance, increased purity of the cathode product and reduced maintenance cost are some of the added advantages.

The impurities and additives present in electrowinning electrolytes impose some restriction, on the application of catalytic anodes for metal winning operations. For example, the presence of manganese in solution is deterrant for the operation of catalytic anodes as the deposition of poorly conductive manganese oxides during electrowinning process, gradually cover the surface resulting in increased cell voltage.

This paper investigates the problem of deactivation of catalytic anodes by manganese ions studied under galvanostatic conditions. The effect of certain soluble compounds of arsenic and phosphorous on the inhibition of MnO_{2} formation has been studied.

EXPERIMENTAL

Valve metal support particles were degreased with trichloroethylene and impregnated with the activating solution in an amount equivalent to 1.0 wt \% Ru by weight of support particles. The impregnated particles were dried at $120^{\circ} \mathrm{C}$ and finally heated to $450^{\circ} \mathrm{C}$ for 1 hour, in an air stream. The electrocatalyst thus prepared was embedded in the surface of lead sheet to substantially cover the surface of the substrate. RUO_{2} film electrodes of $2 \mathrm{~cm}^{2}$ area on titanium substrate with Ru content. of $0.5 \mathrm{mg} \mathrm{cm}^{-2}$ were prepared by thermal decomposition technique. Platinum electrode of 5.2 cm^{2} area was exployed for current efficieney studies of MnO_{2} deposition. Anodic polarization studies were carried out under galvanostatic conditions in $1 \times \mathrm{H}_{2} \mathrm{SO}_{4}$ containing upto $20 \mathrm{gl}^{-1}$

Mn (II) ions at a current density of $400 \mathrm{~mA} \mathrm{~cm}^{-2}$. As(III) addition in the form of sodium meta arsenite from 0 to 600 ppm and addition of $\mathrm{P}(\mathrm{V})$ in the form of $\mathrm{H}_{3} \mathrm{PO}_{4}$ from 0 to 1000 ppm were employed. Long term polarization studies with electrodes of $45 \mathrm{~cm}^{2}$ area were carried out at a current density of $40 \mathrm{~mA} \mathrm{~cm}^{-2}$ for a period of 8 hrs . Potentials were measured against saturated calomel electrode (SCE) and converted to normaI hydrogen electrode (NHE). Seanning electren micrographs of RUO_{2} film electrodes polarized at $40 \mathrm{~mA} \mathrm{~cm}^{-2}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ with and without Mn (II) and $P(V)$ have been taken.

RESULTS AND DISCUSSION

Fig. I indicates potential-time curves for oxygen evolution of RUO_{2} film electrode. In presence of Mn^{2+} the anode potential gradually

Fig. 1 : Anode potential-time curves for oxygen evolution on RUO_{2} film electrode of $\mathrm{Ru} 0.5 \mathrm{mg} \mathrm{cm}^{-2}$ loading in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with additions of Mn(II)
increases as the catalytic surface is poisoned by MnO_{2} deposition. An increase of 50 mV in anode potential for a period of 8 hrs . duration was noticed. The MnO_{2} formation may be represented by the equation:
$\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 e \quad \mathrm{E}^{\circ}=1.23 \mathrm{~V}$
The gradual increase in the anode potential can be explained by the gradual coverage of the active coating by deposition of electrically poorly conductive manganese oxides.

The effect of $\mathrm{P}(\mathrm{V})$ and $\mathrm{As}(I I)$ on the anode potential under oxygen evolution conditions is shown in Fig. 2.

Fig. 2: Anode potential-time curves for oxygen evolution on RuO_{2} film slectrode of Ru $0.5 \mathrm{mg} \mathrm{cm}^{-2}$ loading in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ containing $20 \mathrm{gl}^{-1}$ Mn(II) with additions of As(III) or P(V)

The reduction in rise of anode potential by MnO_{2} deposition with 200 ppm As(III) is 15 mV for 8 hrs , and it is around 30 mV for 600 ppm As (III) and $1000 \mathrm{ppm} \mathrm{P}(\mathrm{V})$ additions. The influence of arsenic and phosphorous compounds on the inhibition of MnO_{2} formation can be explained on the basis of preferential adsorption of these compounds on the electrode surface [1-3].

Table 1 shows current efficiency for MnO_{2} deposition with different amounts of $\mathrm{As}(\mathrm{III})$ additions, under the conditions of $1 \mathrm{M}_{2} \mathrm{SO}_{4}$ containing $20 \mathrm{gl}^{-1} \mathrm{Mn}(I)$ at a current density of $100 \mathrm{Am}^{-2}$; with the increase of $\mathrm{A}(\mathrm{ItI})$ addition, the current efficiency for MnO_{2} deposition decreases from 12.8% to 0.25%.

TABLE I : Current afficiency for MnO_{2} deposition in $1 \mathrm{M}_{2} \mathrm{SO}_{4}$ containing $20 \mathrm{gl}^{-1}$ Mn(II) with arsenic (III) additions

As(III) addition
(ppm)

> Current efficiency for MnO_{2} deposition
(\%)

0	12.820
50	7.768
200	2.270
600	0.246

Table II gives current efficiency data for MnO_{2} deposition with $\mathrm{P}(\mathrm{V})$ additions. In this case the current efficiency decreases from 12.8 to 0.86%.

TABL.E II : Current officiency for MnO_{2} doposition in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ containing $20 \mathrm{gl}^{-1} \mathrm{Mn}$ (II) with phosphorous (V) additions

Phosphorous (V) addition (ppm)	Current efficiency for MnO_{2} deposition $(\%)$
0	12.820
100	8.2812
500	2.7130
1000	0.8630

Table III shows the anode potential for RuO_{2} sponge electrode in presence of $\mathrm{Mn}(\mathrm{II})$ and the influence of $\mathrm{P}(\mathrm{V})$ addition. The rise in anode potential is 422 mV for a period of 7 days which reduces to 126 mV in presence of 1000 ppm of $\mathrm{P}(\mathrm{V})$.

TABLE III : Effect of phosphorous (V) on anode potential of RuO_{2} sponge. slectrode in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ containing $5 \mathrm{gl}^{-1} \mathrm{Mn}(\mathrm{II})$ at $400 \mathrm{AM}^{-2}$.

Phosphorous (V) addition
(ppm)

Anode potential rise

for 7 days (mV)

0	422
1000	126

Fig. 3 shows the scanning electron micrograph of RuO_{2} film electrode polarized in $1 \mathrm{M}_{2} \mathrm{SO}_{4}$ which indicates multi-layered pore free structure of RuO_{2}. Fig. 4 is the SEM of RuO_{2} film electrode polarised in IM $\mathrm{H}_{2} \mathrm{SO}_{4}$ containing $20 \mathrm{gI}^{-1} \mathrm{Mn}$ (II) ions where massive crystalline deposition of MnO_{2} is seen. Fig. 5 is the SEM of RuO_{2} film electrode polarized in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ containing $20 \mathrm{gl}^{-1} \mathrm{Mn}(\mathrm{II})+1000 \mathrm{ppm} \mathrm{P}(\mathrm{V})$. Absence of the characteristic massive crystalline structure indicates the inhibition of MnO_{2} formation.

Fig. 3 : SEM photograph of RiO_{2} film electrode polarised in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Fig. 4 : SEM photograph of RuO_{2} film electrode polarised in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ $+20 \mathrm{gl}^{-1} \mathrm{Mn}(11)$

CONCLUSION

Poisoning of the catalytic anodes by $\mathrm{Mn}(\mathrm{II})$ ion in metal winning electrolyte has been studjed. Anode polarization studies under galvanostatio condition with platinum, $\mathrm{RuO}_{2} \mathrm{nim}$ electrode and RuO_{2} sponge electrodes indicated the inhibition of MnO_{2} formation by arsenic and phosphorous compounds. The inhibition may be due to preferential adsorption of these compounds on the electrode surface.

Fig. 5: SEM photograph of RuO_{2} film electrode polarised in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ $+20 \mathrm{gi}^{-1} \mathrm{Mn}(\mathrm{II})+1000 \mathrm{ppm}$ P(V)

REFERENCES

1. Golumbioschi (F) Politeh Traian Vuia Timisoara Serchim, 28 (1-2) (1983) p 67
2. P Rarnachandran, K V Venkateswaran, R Srinivasan. I Appi Electrochem, 15 (1985) 937
3. E R Cole, Ir A Y Lee, and D L. Paulson, Bureau of Mires, USA, R.I. $8602(1981)$) p 16
