CURRENT EFFICIENCY AND ELECTROCHEMICAL EQUIVALENT IN AN ELECTROLYTIC PROCESS

S.R. NATARAJAN
Central Electrochemical Research Institute, Karaikudi 623 006

ABSTRACT
Calculations of current efficiency of an electrolytic reaction and of electrochemical equivalent of the metal involved are discussed. A formula for the electrochemical equivalent of a ternary alloy is also given.

The current efficiency of an electrolytic process is that percentage of total quantity of electricity consumed, which is effectively utilised for the desired electrolytic reaction. In metal deposition, for example, the conditions of bath operation, like temperature and current density are so chosen that the current efficiency is high without the desirable properties of the deposit being deleteriously affected. A high current efficiency is desirable for any cathodic or anodic process for, only then can one be sure of the reaction concerned, proceeding unimpeded.

In cases where only a single metal is involved, the current efficiency can be determined from relevant data with a simple formula as below:

\[
\text{Current efficiency} = \frac{\text{Mass of metal deposited or dissolved} \times 100}{\text{ampere seconds}} \times \frac{\text{electrochemical equivalent of the metal}}{\text{electricity consumed}}
\]

An extension of this formula to electrolytic alloy deposition or dissolution leads one to conclude that summing up of the individual current efficiencies is necessary. The formula for current efficiency of alloy deposition is given by

\[
P_1M_1 + P_2M_2 \quad \text{Ma} = \frac{\text{current in coulombs of electricity effectively consumed}}{e_1I_T + e_2I_T}
\]

where \(P_1\) and \(P_2\) are the percentages by mass \(M_A\) of the alloy deposit, \(e_1\) and \(e_2\) the respective electrochemical equivalents and \(I\), the current passed for a duration of \(T\) seconds, is of great help in determination of the current efficiency of a binary alloy [1].

It is well known that the electrochemical equivalent should be taken into account for calculation of the current efficiency. The formula for electrochemical equivalent

\[
e_a = \frac{e_1e_2}{e_1f_2 + e_2f_1}
\]

where \(e_1\) and \(e_2\) are the individual electrochemical equivalents of binary alloy constituents and \(f_1\) and \(f_2\) are fractions by mass, was reported to be applicable to binary alloy deposition with 100 per cent current efficiency [2]. A close examination of the factors involved shows, however, that the electrochemical equivalent of an alloy is not connected with the current efficiency though it should be useful for determination of the latter. How can one calculate the electrochemical equivalent of a binary or even a ternary alloy and hence the overall current efficiency for its electrolytic deposition or dissolution is shown in the following paragraphs.

Let \(M_A\) be the mass of the binary alloy deposited under certain conditions. If it is assumed that \(e_a\) is the electrochemical equivalent of the alloy, \(e_1\) and \(e_2\) those of the constituent metals, and \(M_1\) and \(M_2\) their masses making up the deposit,

\[
e_a = \frac{M_A}{\frac{M_1}{e_1} + \frac{M_2}{e_2}}
\]

Dividing both the numerator and denominator on the right hand side by \(M_A\),

\[
\frac{1}{\frac{M_1}{e_1} + \frac{M_2}{e_2}} = \frac{1}{\frac{M_1}{e_1M_A} + \frac{M_2}{e_2M_A}}
\]

Now only a simple calculation is required for determining the current efficiency of binary alloy deposition.

\[
\text{Current efficiency (\%)} = \frac{M_A \times 100}{e_a \times \text{coulombs of electricity passed}}
\]
Natarajan — Current efficiency and electrochemical equivalent in an electrolytic process

\[M_0 \times \frac{Q}{100} \times 100 \]

\[\frac{M_0 \times Q}{M_1 \times \frac{Q_1}{Q} + M_2 \times \frac{Q_2}{Q} + M_3 \times \frac{Q_3}{Q}} \times 100 \]

If \(P_1 \) and \(P_2 \) are percentages by mass of each alloy constituent and \(Q \) is taken as IT,

\[\text{current efficiency (\%) } \frac{P_1 M_0}{e_1} + \frac{P_2 M_0}{e_2} = \frac{M_0 \times Q}{e_0 \times \text{coulombs of electricity passed}} \]

which is the same as referred to earlier.

The formula for the electrochemical equivalent of a ternary alloy can also be derived. If \(M_1, M_2 \) and \(M_3 \) are the masses of the alloy constituents and \(e_1, e_2 \) and \(e_3 \) their electrochemical equivalents respectively,

\[e_0 = \frac{M_0}{M_1 \times \frac{Q_1}{Q} + M_2 \times \frac{Q_2}{Q} + M_3 \times \frac{Q_3}{Q}} \times 100 \]

If \(P_1, P_2 \) and \(P_3 \) are the percentages by mass of each alloy constituent, and \(Q \) is taken as IT,

\[\text{Current efficiency (\%) } \frac{P_1 M_0}{e_1 IT} + \frac{P_2 M_0}{e_2 IT} + \frac{P_3 M_0}{e_3 IT} \]

The current efficiency is thus equal to the sum of the individual current efficiencies.

REFERENCES

216 — Bulletin of Electrochemistry 1 (2) Mar-Apr 1985