CHARACTERISATION OF MANGANESE DIOXIDE FOR NONAQUEOUS LITHIUM CELLS

R GANGADHARAN, PNN NAMBOODIRI, R JANAKIRAMAN Central Electrochemical Research Institute, Karaikudi - 623 006 and P NARAYANAN, University of Cochin 682022

ABSTRACT

Physicochemical properties of chemically prepared MnO_2 were studied in detail. Li - MnO_2 cells were fabricated with the prepared manganese dioxide and their performance characteristics were studied. The best manganese dioxide for Li - MnO_2 nonaqueous cell was identified.

Key Words: Manganese dioxide, lithium cells, nonaqueous cells

INTRODUCTION

S ince its discovery [1], many types of lithium cells have been invented for commercial exploitation. Li-SO₂, Li-SO₂Cl₂, Li-SOCl₂, Li-(CF)_n, Li-CuO, Li-FeS₂ and Li-MnO₂ are a few important lithium cells used for various applications [2]. Lithium cells are in general of high energy density, long shelf life and high cell voltage [3]. They can operate at wide ranges of temperatures, depending on the solvents used [4]. Among the known lithium cells, Li-MnO₂ cells are the cheapest and have large commercial applications [5]. Hence, a detailed study was made by preparing MnO₂ under different conditions for use in the lithium cells, especially their performance characteristics during discharge processes.

Apart from natural ores [6], the important methods of preparation are, electrochemical methods [7], thermal decomposition methods [8] and precipitation methods. In the electrochemical method it is possible to deposit MnO_2 from $MnSO_4$ [9], $MnCl_2$ [10], or $Mn(NO_3)_2$ [11] solutions using graphite [12], Ti [13], Pg [14], Pt [15] and other anodes [16] under different conditions of pH, concentration, temperatures and current density [17]. In this paper chemical methods of preparation of MnO_2 , [18] by thermal [19] and precipitation methods [20] are presented

EXPERIMENTAL

The conditions of preparation of MnO_2 are available in detail [21]. Table I indicates the various techniques used for preparing MnO_2 by different chemical routes.

Table I: Methods of preparation of MnO_2 and allied details [8, 18, 19, 20]

Sample	Methods of pre- paration of MnO ₂	Appa- rent density	Amount of O ₂ in MnO ₂ sample	Percen- tage of O ₂ in MnO ₂	Internal resistance of Li.MnO ₂ cells
		(g/cm ³)	(^{mg})	sample	(ohms)
I. Roas	sting MnCO ₃ at		-		
400 - 450° C		1.327	0.245	66.6	157
	sting Mn(NO ₃) ₂				
at 250 - 270° C		1.626	0.252	68.5	150
3. Reac	tion of KMnO ₄				
and KI		1.443	0.268	72.9	150
	tion of MnSO ₄				
	KMnO ₄	1.284	0.267	72.6	240
	5. Reaction of KMnO ₄				
	and dil HCl		0.305	82.9	66
	tion of KMnO ₄		0.000		
	H_2SO_3	1.417	0.303	82.3	81
	sting a mixture of		0.000		
	O_3 and NaHCO ₃	1.290	0.282	76.5	200
8. Roas	ting KMnO ₄		0.007	00.7	010
	al at 200° C	1.454	0.297	80.7	210
	tion of MnSO ₄	1 600	0.000	70.0	00 5
	NaOH	1.689	0.280	76.8	325
	tion of $KMnO_4$	1.871	0.000	54.0	115
	and nitrotoluene		0.222	54.9	115
	H_2O_2 , NH_4OH	1.914	0.097	64.4	100
	KMnO ₄	1.316	0.237	64.4	193
	tion of $KMnO_4$	1 594	0.950	05.1	90
	$(NH_4)_2S_2O_8$	1.584	0.350	95.1	38
	tion of alkaline	1 409	פופח	951	019
L IVII	10 ₄ and HCHO	1.408	0.313	85.1	213

a) SEM analysis

Studies were made to get the SEM analysis of various samples for a magnification of 1000 in order to understand the crystalline or amorphous character of MnO_2 . The samples were prepared in a suitable base. The samples were embedded over a thin film of epoxy resin as a gold cup of radius 300 Å and introduced in SEM for getting the photographs.

b) Specific gravity

The powdered samples were porous in nature. Hence, it is difficult to get the true density of the samples. As a battery cathode material, density of MnO_2 plays a very important role in its performance. For a given volume more of MnO_2 can be packed if the density is high. The apparent density of the samples were determined using pycnometric method [22]. The results of experiments were calculated using the equation

$$\frac{W_3 - W_1}{(W_4 - W_1) - (W_2 - W_1)} = apparent density$$

where W_1 = weight of the empty pycnometer

- W_0 = weight of pycnometer with water
- W_3 = weight of sample + pycnometer
- W₄ = weight of sample and water inside the pycnometer

c) Estimation of O₂ in MnO₂

The depolarisation action of MnO_2 largely depends on the nonstoichiometric property of the prepared sample. The available oxygen content in MnO_2 has been estimated along with Mn content using potentiometric titration method [23].

d) Cathodic polarisation of MnO₂ under galvanostatic conditions

i) Cell: A three electrode cell was used for this purpose with a platinum foil as auxiliary electrode and a lithium electrode as a reference electrode. Manganese dioxide powder of -200 mesh was mixed with 10% acetylene black and 1% polyethylene binder and was heated to 110°C for four hours. This mixture was spread over a nickel mesh and was pelletised at a pressure of 7000 kg/ cm². From this pellet suitable leads were taken for measurements.

ii) Electrolyte: Propylene carbonate (PC) was dried over anhydrous CaO and purified by vacuum distillation at 3-4 mm of Hg at 200°C and dried over 4 Å molecular sieves. This sample was further purified with lithium powder, discarding first 10% of the distillate. The water content in the solvent was estimated by automatic Karl Fischer Titrimeter. 1: 2 dimethoxyethane (DME) was dried over CaO and distilled at 80°C under vacuum. Lithium perchlorate (LiClO₄,H₂O) was dried in a vacuum furnace at 120°C for 48 hours.

iii) Solution: The electrolytes $1M \text{ LiClO}_4$ in PC and $1M \text{ LiClO}_4$ in DME were prepared in a dry box under argon atmosphere.

iv) Galvanostatic method: A cell was assembled in the dry box. A current of 4 mA (Fig. 1) was passed between the Pt and MnO_2 electrodes and the potential of the MnO_2 electrode was sensed with lithium reference, electrode with the aid of a printing Voltmeter. The experiments were repeated with 8 mA current (Fig. 2). v) I - E Characteristics : A lithium - MnO₂ button cell was assembled using lithium metal, a cathode mix containing MnO₂, a paper separator, and a solution containing 1M LiClO₄ and PC + DME mixture. The fabricated cell was subjected to different rates of discharge of current by measuring the potentials with time (Fig. 3).

Fig 3: I-E characteristic of Li-MnO2 button cell

RESULTS AND DISCUSSION

Manganese dioxide has been used as a successful cathode/depolariser in neutral [24] alkaline [25] and nonaqueous media [26]. The performance characteristics of manganese dioxide depends on various factors like method of preparation, apparent density, oxygen content and morphology. All the samples prepared as in Table I were subjected to physicochemical and electrochemical studies. The morphological studies with SEM analysis reveal that most of the samples have white spots showing less conducting portion, some develop crystal structure (samples 2, 3, 4, 12) and the rest are amorphous in nature. Hence, the polarisation behaviour of the manganese dioxide vary from sample to sample. The apparent density of the samples varies from 1.28 to 1.87 depending on the method of preparation. Since apparent density is a factor which contributes to the content of the cathodic depolariser in a given volume its amount plays very important role in the performance of the battery.

A thorough scrutiny of the results obtained show that the percentage of MnO_2 in the various samples varies according to the method of preparation. The MnO_2 content is found to be very small in the case of the sample prepared by the reduction of $KMnO_4$ with nitrotoluene. However, the apparent density of this sample is the highest. Similarly the apparent density of the sample 2 is high but MnO_2 content is

found to be low. In all other samples the MnO_2 containing O_2 is above 80%. In all these samples it is observed that the O_2 content is found to be low due to the fact that the conversion of MnO_2 is partial and products like MnO, Mn_2O_3 and Mn_3O_4 will be formed when $Mn(OH)_2$, $Mn(BO_3)_2$ and $MnCO_3$ are heated.

Manganese dioxide was cathodically polarised under galvanostatic conditions and the nature of the polarisation curves were studied in detail at 4 mA and 8 mA currents in PC + DME mixture containing LiClO₄. The samples 6, 12 and 13 show uniform variation of potential with time. Therefore these samples are the best depolarisers in Li - MnO₂ cells. It is also notice that these samples have fairly good apparent density and high oxygen content. The other samples cannot give better efficiency of reduction of MnO₂ due to the formation of suboxides. The polarisations were carried at 8 mA current and the I-t curves show a steep fall showing that the cells cannot deliver high currents.

CONCLUSION

The sample of MnO_2 prepared from $MnSO_4 + (NH_4)_2S_2O_8$ or reduction of $KMnO_4$ with HCHO or H_2SO_3 shows satisfactory performance as a depolariser in nonaqueous Li- MnO_2 cells.

Acknowledgement: The authors thank Sri Y. Mahadevan and Sri T M Balasubramanian, Scientists, CECRI, for helping us in getting the SEM analysis and O_2 content in MnO_2 respectively.

REFERENCES

- 1. JJ Auborn, A Heller and K W Frenci, Power Sources Symp. Proc. 25 (1972) 6
- 2. HV Venkatasetty, Ed. Lithium Battery Technology, John Wiley & Sons, New York (1984) p. 61.
- 3. R Gangadharan, PNN Namboodiri, KV Prasad and RViswanathan. Power Sources, 4 (1979) 1
- HV Venkatesetty, DJ Saat Loff and BK Patel. Proc. Symp. Lithium Battery, HV Venkatasetty, Ed. Electrochemical Soc. N.J. (1981) p. 155.
- 5. H Ikeda, S Narukawa, H Napshima and M Fugimoto. Proc. Symp. Lithium Batteries, A. N. Dey Ed. Electrochem. Soc. Inc., N.J. (1984) p. 311.
- 6. KV Kordesch, Ed. Batteries, Vol. I. Manganese Dioxide; Marcel Dekker Inc., N.Y. (1974) p. 23.
- 7. M Bolen, B H Weil Literature Search on Dry Cell Technology, Survey of Electrolytic Synthesis of Battery Active Manganese Dioxide. Georgia Inst. Tech. Atlanta (1949).
- 8. JR Partington. A College Course of Inorganic Chemistry. MacMillan and Co., London (1948) p. 587

- 9. H Takahashi, Denki Kagaku, 6 (1939) 227
- 10. K Matsuki, T Endo and H Kamada. *Electrochim. Acta.* 9-7 (1984) 983.
- 11. V Aravamuthan and S Visvanathan, Electrotechnology (India) 6, 2 (1962) 66-71.
- 12. I Muraki, J. Chem. Soc. Japan, Ind. Chem. Sect. 63 (1960) 2089.
- K Shimizu and I Shirahata, Furukawa Denko Jiho. No. 43 (May 1967)
- T Tsuruoka, K Shiroki and R Asaoka. Denki Kagaku, 27 (1959) 229.
- N Kameyama and H Ida, J. Chem. Soc. Japan; Ind. Chem. Sect. (Showa 7, August Issue), Toyoto Kenkyua Iho 1 (1932) 87; 2 (1934) 1
- 16. A Kozawa in Electrochemistry of manganese dioxide and manganese dioxide batteries in Japan. Vol. 1; Ed. S Yoshizawa, K Takahashi and A Kozawa, U.S. Branch Office of Electrochem. Soc of Japan (1971) p. 57.
- 17. I Muraki and Y Okajima. J. Chem. Soc. Japan, Ind. Chem. Sect. 64 (1961) 137.

- H Tamura, Electrochemistry of manganese dioxide and manganese dioxide batteries in Japan, Vol. II. Ed. K Takahashi, S Yashizawa and A Kozawa (1971) p. 189.
- Y Miyake in Electrochemistry of Manganese dioxide and Manganese dioxide batteries, Vol. I. Ed. S Yoshikawa, K Takahashi and A Kozawa, U.S. Branch Office of Electrochem. Soc. Japan (1971) p. 115.
- K M Parida, S B Kanuongo and B R Sant. Electrochim. Acta. 26 (1981) 1147.
- HSB Kanuongo, KM Parida and BR Sant. Electrochim. Acta. 26 (1981) 1147
- 22. HW Salzberg, JI Morrow, SR Cohen, ME Green, Physical Chemistry—A modern Laboratory Course, Academic Press, New York (1969) p. 77.
- 23. KJ Vetter and N Jaeger; Electrochim. Acta. 11 (1966) 401.
- 24. KV Kordesch, Ed. Batteries, Vol. 1. Manganese dioxide; Marcel Dekker Inc., New YOrk (1974) p. 1.
- 25. KV Kordesh, ibid. p. 241.
- 26. PR Moses, MJ Turchen, AH Taylor and R M Mank. Proc. Lithium Batteries. Ed. HV Venkatasetty. Electrochem. Soc. N.J. (1981) p. 333