Prakash, A.S. and Manikandan, P. and Ramesha, K. and Sathiya, M. and Tarascon, J.M. and Shukla, A.K. (2010) Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode. Chemistry of Materials, 22. pp. 2857-2863. ISSN 0897-4756

[img] PDF (CR)
Restricted to Repository staff only

Download (980Kb)


Nanocrystalline Li4Ti5O12 (LTO) crystallizing in cubic spinel-phase has been synthesized by single-step-solution-combustion method in less than one minute. LTO particles thus synthesized are flaky and highly porous in nature with a surface area of 12 m2/g. Transmission electron micrographs indicate the primary particles to be agglomerated crystallites of varying size between 20 and 50 nm with a 3-dimensional interconnected porous network. During their galvanostatic charge-discharge at varying rates, LTO electrodes yield a capacity value close to the theoretical value of 175 mA h/g at C/2 rate. The electrodes also exhibit promising capacity retention with little capacity loss over 100 cycles at varying discharge rates together with attractive discharge-rate capabilities yielding capacity values of 140 mA h/g and 70 mA h/g at 10 and 100 C discharge rates, respectively. The ameliorated electrode-performance is ascribed to nano and highly porous morphology of the electrodes that provide short diffusion-paths for Li in conjunction with electrolyte percolation through the electrode pores ensuring a high flux of Li.

Item Type: Article
Subjects: Lithium batteries
Electrochemical Power Sources
Depositing User: ttbdar CECRI
Date Deposited: 18 Jan 2012 06:50
Last Modified: 19 Jan 2012 04:25

Actions (login required)

View Item View Item